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A three-parameter variational wave function is used to describe the binding energy of
alkali–metal negative ions using a two-electron system in the ns2-state. Each electron is
described by a modified screened hydrogenic wave function involving two free screening
parameters denoted byc anda in addition to the core-screened nuclear charge,

∗
Z. The

model is applied to lithium, sodium, potassium, rubidium, and cesium anions, where the
optimum values of the variational parameters are deduced through fitting the optimized
energy to the available experimental values. It is also applied to group-II isoelectronic
neutral atoms of Be, Mg, Ca, Sr, and Ba. The results of our calculation are compared
with other two-electron methods.

KEY WORDS: electronic structure of atomic negative ions; variational techniques;
electron affinity; photodetachment.

1. INTRODUCTION

The physical properties of alkali–metal negative ions are mainly determined
by the nature of the Coulomb field acting on the two outer s electrons and the
mutual repulsion between them. Although two-electron theoretical models have
been applied successfully to helium-like atoms and positive ions (Tripathy,et al.,
1995), the only negative ion studied extensively is H− (Le Sech, 1997; Moumeni
et al., 1990; Patil, 1999; Porras, 1995; Siebbeleset al., 1993; Siebbeles and Le Sech,
1994; Blondel, 1995).

The electron affinity (EA) of an atom A is defined as the difference between
the total energies (Etot.) of the ground states of A and its negative ionA− (Andersen
et al., 1999; Hotop and Lineberger, 1985):

E A(A) = Etot.(A)− Etot.(A−).
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Thus, the EA of an atom is numerically equal to the binding energy of the ex-
tra electron in the anion. The two outer electrons in alkali–metal anions are
strongly correlated (Weiss, 1968). Vosko and Wilk (1983) used self-interaction-
corrected local correlation energy functional to calculate〈r2〉 for Li−, Na−, and
K− and the electron affinities of their parent neutral atoms. Christensen-Dalsgaard
(1985) calculated the sizes of Li−, Na−, and K− and the electron affinities of
their parent neutral atoms using two-electron model wave functions. This work
is an extension of the previous work of Abbadiet al. (2001), where a two-
parameter wave function for 2p2-orbitals was employed to deduce the optimum
effective screened nuclear charge in few light anions, using a variational
technique.

In this paper, modified screened atomic hydrogen-like orbitals with three
adjustable input parameters are used to describe the two outermost valence electron
in Li−, Na−, K−, Rb−, and Cs−. The first parameters,

∗
Z, represents the effective

core-screened nuclear charge, the second one,c, manifests a constant average
electronic screening of the nuclear charge while the third one,a, provides spatial
correlation correction through its variable screening effect built in the radial wave
function. The total energy of each anion is calculated using a variational method.
A similar approach was applied by Porras (1995) to the ground state of helium
neutral atom and its isoelectronic sequence. Le Sech (1997) used simple two- and
three-parameter wave functions for the ground state of H−; then, Magnieret al.
(1999) extended that method to calculate the ground state energies of alkali–metal
anions.

2. THEORY

The alkali–metal negative ion is assumed to consist of two outernsvalence
electrons moving in a spherically symmetric screened Coulomb field due to the
nucleus and more electrons. Thus, the core region of the anion is replaced by
an effective screened nuclear charge,

∗
Z. The nonrelativistic Hamiltonian of the

two-electron system, using atomic units, is (Bethe and Salpeter, 1957):

Ĥ = −1

2

(∇2
1 +∇2

2

)− ∗
Z
r1
−

∗
Z
r2
+ 1

r12
, (1)

wherer1 andr2 are the radial coordinates of electrons 1 and 2 relative to the center
of the nucleus, respectively. The distance between the two electrons isr12 and∇2

is the Laplacian operator. The total energy of the system is:

E = T + V1+ V12, (2)

whereT is the total kinetic energy,V1 is the total potential energy of attraction
between the two electrons and the nucleus, andV12 is the potential energy of inter-
electronic repulsion. The Schrodinger equation corresponding to the Hamiltonian
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of Eq. (1) cannot be separated in any coordinate system due to the presence of the
interelectronic distance,r12, therefore a variational method will be used. The trial
wave function of the system is written as a product of symmetric space function
and antisymmetric spin function, according to Pauli exclusion principle, i.e.,

9( Er1, Er2) = 9( Er1)9( Er2) [χ+(1)χ−(2)− χ+(2)χ−(1)]/
√

2, (3)

with χ±(1) andχ±(2) for the spin functions of electrons 1 and 2, respectively. In
fact, the spin wave function in Eq. (3) has no effect on the value of the total energy
presented in Eq. (2) (Levine, 1974; Lowe, 1993). Therefore, the ground-state wave
function of the alkali anion can be written as a product of two single-electron radial
functions as follows:

9( Er1, Er2) = 8(r1)8(r2), (4)

such that each function comprises a product of two functions:

8n(r ) = NnF1n(r )F2n(r ), (5)

whereNn are the normalization constants corresponding to the principal quantum
numbers,n. The first function is the screened hydrogen-like wave function:

F1n(r ) =
[

m=n−1∑
m=0

pmr m

]
exp

[
−

∗
Z
n

r

]
, (6)

with the associated Laguerre polynomials of ordern− 1 in the first bracket being
multiplied by an exponential factor, which involves the core-screened nuclear
charge,

∗
Z.

The associated Laguerre polynomials for alkali negative ions are

Li−(n = 2) :

[
1−

( ∗
Z
2

)
r

]
, (7a)

Na−(n = 3) :

1− 2

( ∗
Z
3

)
r + 2

3

( ∗
Z
3

)2

r 2

 , (7b)

K−(n = 4) :

1− 3

( ∗
Z
4

)
r + 2

( ∗
Z
4

)2

r 2− 1

3

( ∗
Z
4

)3

r 3

 , (7c)

Rb−(n = 5) :

1− 4

( ∗
Z
5

)
r + 4

( ∗
Z
5

)2

r 2− 4

3

( ∗
Z
5

)3

r 3+ 2

15

( ∗
Z
5

)4

r 4

 ,

(7d)
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Cs−(n = 6) :

1− 5

( ∗
Z
6

)
r + 20

3

( ∗
Z
6

)2

r 2− 10

3

( ∗
Z
6

)3

r 3+ 2

3

( ∗
Z
6

)4

r 4

− 2

45

( ∗
Z
6

)5

r 5

 . (7e)

The second function is chosen to manifest the screening effect of each valence
electron through the use of two parameters,c anda:

F2n(r ) = exp

[ ∗
Zc

n

{
r + 1

a
exp(−ar )

}]
. (8)

When the two electrons are close to the nucleus (r → 0), the total wave function
of Eq. (5) satisfies Kato’s cusp condition:

lim
r→0

[
d

dr
|8n(r )|2

]
= −2

∗
Z lim

r→0
[|8n(r )|2]. (9)

The asymptotic behavior at large distances (r →∞) is also guaranteed since the
function in Eq. (5) approaches zero in this case.

The normalization constants are calculated from Eq. (5) by applying the
normalization condition with the following coordinate transformation:

x = exp(−ar ). (10)

The number of integral terms in the resulting expression forNn is n(n+ 1)/2, and
the resulting expression forN2 is:

N2
2 = a3÷

I (2,α, β)−
∗
Z
a

I (3,α, β)+
{ ∗

Z
2a

}2

I (4,α, β)

 , (11)

where

α = 2
∗
Z(1− c)/na, β = 2

∗
Zc/na, and

I (m, α, β) =
∫ 1

0
(− ln x)mxα−1 exp(βx)dx = m!

∑
s=0

βs

S!(s+ α)m+1
. (12)

The total kinetic energy of the two electrons is:

T =
〈
9( Er1, Er2)

∣∣∣∣−1

2

(∇2
1 +∇2

2

)∣∣∣∣9( Er1, Er2)

〉
. (13)

The symmetry of the two electrons leads to the following expression:

T = 2
∫ ∞

0
8(r )

[
− 1

2r 2

d

dr

(
r 2 d8(r )

dr

)]
r 2dr. (14)
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The result of integration leads to a certain number of kinetic energy terms for each
anion, [7n(n+ 1)− 2]/2. There are 20 kinetic energy terms for Li−, which could
be grouped into 11 terms:

T1 = 1

a

(
α +

∗
Z
a

)
N2

2 I (1,α, β) (15a)

T2 = − 1

2a

α2

2
+ 3

∗
Zα

a
+
{ ∗

Z
a

}2
 N2

2 I (2,α, β) (15b)

T3 =
∗
Zα

2a2

(
α

2
+

∗
Z
a

)
N2

2 I (3,α, β) (15c)

T4 = −1

a

( ∗
Zα

4a

)
N2

2 I (4,α, β) (15d)

T5 = β

a
N2

2 I (1,α + 1,β) (15e)

T6 = − β
2a

(
1+ α + 3

∗
Z
a

)
N2

2 I (2,α + 1,β) (15f)

T7 =
∗
Zβ

2a2

(
1+ α +

∗
Z
α

)
N2

2 I (3,α + 1,β) (15g)

T8 = − β
2a

{ ∗
Z
2a

}2

(1+ α)N2
2 I (4,α + 1,β) (15h)

T9 = −β
2

4a
N2

2 I (2,α + 2,β) (15i)

T10 =
∗
Zβ2

4a
N2

2 I (3,α + 2,β) (15j)

T11 = −1

a

{ ∗
Zβ

4a

}2

N2
2 I (4,α + 2,β) (15k)

Assuming that the two electrons are identical, their energy of Coulomb attraction
due to the nucleus becomes:

V1 =
〈
9( Er1, Er2)

∣∣∣∣∣−
∗
Z
r1
−

∗
Z
r2

∣∣∣∣∣9( Er1, Er2)

〉
= −2

∗
Z

∫ ∞
0
|8(r )|2rdr. (16)
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The number of integral terms in the resulting expression forV1 is n(n+ 1)/2, and
the result for Li− is:

V1 = −2
∗
Z

a2
N2

2

I (1,α, β)−
∗
Z
a

I (2,α, β)+
{ ∗

Z
2a

}2

I (3,α, β)

 . (17)

The energy of mutual electronic repulsion is:

V12 =
〈
9( Er1, Er2)

∣∣∣∣ 1

r12

∣∣∣∣9( Er1, Er2)

〉
, (18)

which can be expressed as follows (Porras, 1995; Weissbluth, 1978):

V12 = 2
∫ ∞

0
r [8(r )]2 dr

∫
0

s2[8(s)]2 ds. (19)

The last integral is performed through expanding the exponential as a power series,
and the result for Li− is:

V12 = N4
2a−9J(α, β), (20)

where theJ integral has the following expression:

J(α, β) = 1

2
a2I (1,α, β){4a2I (2,α, β)− 4

∗
ZaI (3,α, β)+ ∗

Z2I (4,α, β)}

+ 1

2

∗
ZaI (2,α, β){−4a2I (2,α, β)+ 5

∗
ZaI (3,α, β)− ∗

Z2I (4,α, β)}

+ 1

8

∗
Z3I (3,α, β){−4aI (3,α, β)+ ∗

ZI (4,α, β)

+
∑
q=0

βq

q!(α + q)
[ J1+ J2+ J3+ J4+ J5+ J6+ J7]. (21)

with

J1 = 4a2

(α + q)4
I (1, 2α + q, β){−3

∗
Z2+ 3

∗
Za(α + q)− a2(α + q)2} (22a)

J2 = 4a

(α + q)4
I (2, 2α + q, β){3 ∗Z3− 6

∗
Z2a(α + q)

+ 4
∗
Za2(α + q)2− a3(α + q)3} (22b)

J3 = 1

(α + q)4
I (3, 2α + q, β){−3

∗
Z4+ 15

∗
Z3a(α + q)− 19

∗
Z2a2(α + q)2

+ 10
∗
Za3(α + q)3− 2a4(α + q)4} (22c)
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J4 =
∗
Z

(α + q)3
I (4, 2α + q, β){−3

∗
Z3+ 9

∗
Z2a(α + q)

− 9
∗
Za2(α + q)2+ 4a3(α + q)3} (22d)

J5 =
∗
Z2

2(α + q)2
I (5, 2α + q, β){−3

∗
Z2+ 7

∗
Za(α + q)− 6a2(α + q)2} (22e)

J6 =
∗
Z3

2(α + q)
I (6, 2α + q, β){− ∗Z + 2a(α + q) (22f)

J7 =
∗
Z4

8
I (7, 2α + q, β). (22g)

The initial value of the parameter
∗
Z is estimated from the exact solution to

Schrodinger equation for the parent neutral atom (ns1 orbital) whose first ionization
potential energy,E1, is:

E1 = ∗
Z2/(2n2). (23)

The experimental value of the ground-state energy of the anion is the sum
of E1 and the electron affinity of the corresponding parent neutral atom,
E2, i.e.,

|E| = E1+ E2. (24)

3. RESULTS

The ground-state energy of each alkali negative ion is computed using a
computer program, which minimizes the total energy expressed in Eq. (2) with

Table I. Theoretical Values of Effective Nuclear Charge,
∗
Zth, and the Experimental

Values of Binding Energies (E1, E2, E) for Alkali–Metal Anions

Anion Z
∗
Zth E1(eV)a E2(eV) −E(a.u.)

Li− 3 1.259 5.391 72 0.618 049(21)b 0.220 85(2)
Na− 11 1.844 5.139 08 0.547 926(25)c 0.208 994(1)
K− 19 2.259 4.340 66 0.501 459(12)d 0.177 945(4)
Rb− 37 2.770 4.177 13 0.485 916(20)e 0.171 365(1)
Cs− 55 3.210 3.893 90 0.471 626(25)f 0.160 431(1)

aLide, 2000.
bHaeffleret al., 1996.
cHotop and Lineberger, 1985.
dAnderssonet al., 2000.
eAndersenet al., 1999.
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Table II. Calculated Optimum Values of the Ground-State Energy,E, and
the Variational Parameters of Li−, Na−, K−, Rb−, and Cs−

Anion
∗
Z c

∗
Zc a −E(a.u.)

Li− 1.246 45 0.2159 0.2691 0.458 0.220 85(2)
Na− 1.671 780 0.1550 0.2590 0.379 0.208 994(1)
K− 1.982 861 0.1258 0.2495 0.894 0.177 945(4)
Rb− 2.361 425 0.1067 0.2519 0.829 0.171 365(1)
Cs− 2.691 890 0.0947 0.2550 — 0.160 431(1)

respect to both parametersc and a. The initial value for
∗
Z is calculated from

Eq. (23) using the latest available experimental values ofE1 taken from Lide
(2000) and the references therein. The variational procedure is iterated using other
values of

∗
Z until the least energy of the system is closest to the well-established

experimental value given by Eq. (24). The experimental values ofE2 are taken from
Andersenet al. (1999) and the references therein while the conversion factor for
energy units (1 a.u.= 27.211 3961(81) eV) is taken from Cohen and Taylor (1987).
Theoretical values of effective nuclear charge,

∗
Zth, and the experimental values

of binding energies (E1, E2, E) for alkali–metal anions are presented in Table I.
The optimum values of the parameters for all alkali anions are listed in Table II.
The optimum values of

∗
Z are slightly less than the corresponding theoretical

ones,
∗
Zth, due to mutual repulsion and angular correlation effects among the core

electrons (Christensen-Dalsgaard, 1985; Moumeniet al., 1990). They increase
with increasing atomic number while those ofc decrease, reflecting the decrease
in average screening due to the valence electrons as the principal quantum number
increases. The screening constant,

∗
Zc, does not change appreciably and its average

value is 0.257± 0.003. The corresponding values of the parametera show no
systematic change, except for the overall variable screening character. No specific
value ofa was obtained for Cs− due to the multiple-node structure of its wave
function. In Table III, we display the calculated values ofNn, V1, V12, V, andT,

Table III. Calculated Values of the Normalization Constant and the Energy
Terms Used to Obtain the Ground-State Energies Listed in Table II

Li− Na− K− Rb− Cs−

N2 0.213 749 0.147 123 0.094 282 0.074 144 0.056
−V1 0.565 751 0.445 137 0.335 255 0.301 018 0.267
V12 0.152 898 0.094 80 0.063 918 0.049 157 0.039 04
−V 0.412 853 0.350 337 0.271 337 0.251 861 0.228
T 0.191 993 0.141 342 0.093 392 0.80 496 0.068
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Table IV. Calculated Optimum Values of the Ground-State Energy,E, and
the Variational Parameters of Group-II Isoelectronic Neutral Atoms

Element
∗
Z c

∗
Zc a −E(a.u.)

Be 2.314 260 0.1261 0.2918 0.868 663 1.011 850
Mg 3.036 138 0.0915 0.2778 2.509 790 0.833 530
Ca 3.545 350 0.0801 0.2840 1.981 110 0.660 932
Sr 4.210 458 0.0711 0.2994 1.725 140 0.614 633
Ba 4.774 845 0.0651 0.3108 — 0.559 163

whereV = V1+ V12. They follow a general trend of decreasing absolute values as
the principal quantum number,n, increases. The calculation is applied to reproduce
the ground-state energies of the isoelectronic neutral atoms of Be, Mg, Ca, Sr, and
Ba. The results are presented in Table IV, where (−E) is the sum of the first and
second ionization energies obtained from the experimental data. The average value
of (

∗
Zc) in this case is 0.293± 0.005, which is slightly larger than that for the anions

due to larger nuclear charge (1Z = +1) although the correspondingc values are
less. The values ofa are larger for neutral atoms compared to the corresponding
anions.

The calculated expectation values for the ground-state wave functions of
alkali–metal anions (〈r 〉, 〈r 2〉, 〈1/r 〉, 〈1/r 2〉, 〈1/r12〉) are listed in Table V. It shows
a rapid increase in the values of〈r 〉 and〈r 2〉with increasing atomic numbers, with
〈r 〉 being slightly less than〈r 2〉1/2 for each individual anion.

4. CONCLUSION

In this work, the ground state of each alkali–metal negative ion is described by
a two-electron theoretical model for the ns2-state. The wave function of each elec-
tron involves three adjustable parameters whose optimum values are determined
from a variational calculation. The screening effect due to the core electrons is
manifested through the parameter,

∗
Z, while the mutual screening of the valence

Table V. Calculated Expectation Values for the Ground-State Wave Functions
of Alkali–Metal Anions

Anion 〈r 〉 〈r 2〉 〈1/r 〉 〈1/r 2〉 〈1/r12〉

Li− 5.9063 40.4289 0.226 945 0.175 155 0.152 898
Na− 9.5052 99.6901 0.133 133 0.078 046 0.094 80
K− 14.1567 215.77 0.084 538 0.032 193 0.063 918
Rb− 18.4612 362.955 0.063 736 0.020 653 0.049 157
Cs− 23.309 574.374 0.049 659 0.013 189 0.039 04
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electrons is represented by the parametersc and a. The expectation values of
the wave function are useful in estimating the size of the anion and its detach-
ment cross-section. The calculated values of〈r 〉 are larger than those obtained by
Christensen-Dalsgaard (1985) because all differences in nodal structure were con-
tained in the angular functions used there. The results are useful for the physical
interpretation of interaction processes involving negative ions.
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